Computational Biology
Awesome Computational Biology
¶
A curated collection of databases, software, and papers related to computational biology.
Computational biology involves the development and application of data-analytical and theoretical methods, mathematical modelling and computational simulation techniques to the study of biological, ecological, behavioural, and social systems. — Wikipedia
Databases¶
scRNA¶
- Gene Expression Omnibus — Public functional genomics database.
- Single Cell PORTAL — Public database for single-cell RNA.
- Single Cell Expression Atlas — Public database for single-cell RNA.
Compound¶
- PubChem — One of the largest chemical databases (compounds, genes, and proteins).
- ChEBI — Database focused on small chemical compounds.
- ChEMBL — Bioactive molecules with drug-like properties.
- ChemSpider — Chemical structure database.
- KEGG COMPOUND — Collection of small molecules and biopolymers.
- LIPID MAPS — Database of lipids.
- Rhea — Database of chemical reactions.
- Drug Repurposing Hub — Collections of drug repurposing data (drug, MoA, target, etc).
- Therapeutic Target Database — Drug-target, target-disease, and drug-disease datasets.
- ZINC ligand discovery database — Free database of commercially-available compounds for virtual screening.
- MoleculeNet — Benchmark datasets for molecular machine learning.
Pathway¶
- PathwayCommons — Database of pathways and interactions.
- KEGG PATHWAY — Collection of pathway maps.
- WikiPathways — Database of biological pathways.
- Reactome — Expert-curated, peer-reviewed pathway database with detailed reaction mechanisms.
- BioCyc — Collection of pathway/genome databases across thousands of organisms.
- SIGNOR — Database of causal signaling interactions and pathways.
- MSigDB (Molecular Signatures Database) — Curated gene sets derived from pathways and biological processes.
Mass Spectra¶
- MassBank — Open source databases and tools for mass spectrometry reference spectra.
- MoNA MassBank of North America — Meta-database of metabolite mass spectra, metadata, and associated compounds.
Protein¶
- THE HUMAN PROTEIN ATLAS — Comprehensive human protein database (cells, tissues, organs).
- PROTEIN DATA BANK (PDB) — 3D structures of proteins, nucleic acids, complexes.
- UniProt — Functional information on proteins.
- AlphaFold Protein Structure Database — 3D protein structure predictions.
- RCSB Protein Data Bank — Repository for structural data of biological molecules.
- Critical Assessment of Structure Prediction (CASP) — Assessing methods for protein structure prediction.
- Uniclust — Clustered protein sequence databases.
- CATH database — Hierarchical classification of protein domain structures.
Genome¶
- Human Genome Resources at NCBI — Database for genomics, proteomics, transcriptomics, and systems biology.
- GenBank — NCBI's database of genetic sequences.
- UCSC Genome Browser — UCSC's genome browser.
- cBioPortal — Cancer genomics database; aggregating many patient datasets.
- 10x Genomics Dataset — Collection of single-cell datasets.
- The Genotype-Tissue Expression (GTEx) — Human gene expression and regulation resource.
- Dependency Map (DepMap) — CRISPR-Cas9 screens in cancer cell lines.
- Catalogue Of Somatic Mutations In Cancer (COSMIC) — Resource on somatic mutations in cancers.
- MGnify — Resource for metagenomic and metatranscriptomic data.
- JASPAR — Database of transcription factor binding profiles.
Disease¶
- KEGG DRUG — Comprehensive, approved drug information.
- DrugBank — Database of drugs and targets (University of Alberta).
Interaction¶
Drug-Gene Interaction¶
- DGIdb — Drug-gene interactions and the druggable genome.
- Comparative Toxicogenomics Database — Chemical-gene interactions, chemical-disease and gene-disease associations, chemical-phenotype associations.
- SNAP — Dataset of drug-gene interactions.
- Therapeutics Data Commons — Datasets for drug-target, response, drug-drug interaction, etc.
Drug (Cell Line) Response¶
- NCI60 — Focuses on 60 cancer cell lines and many drugs.
- Genomics of Drug Sensitivity in Cancer (GDSC) — Drug sensitivity for ~1000 human cancer cell lines and hundreds of compounds.
- Cancer Cell Line Encyclopedia — Database of ~1000 cancer cell lines.
- CellMiner Cross Database (CellMinerCDB) — Integrates multiple cancer cell line databases.
Chemical-Protein Interaction¶
- STITCH — Chemical-protein interactions.
- BindingDB — Compounds and target database.
- PDBBind — Binding affinity data for biomolecular complexes.
- CrossDocked2020 — Large-scale dataset for structure-based virtual screening.
Protein-Protein Interaction¶
- STRING — PPI networks for multiple organisms.
- BioGRID — Protein, genetic, and chemical interactions.
- HIPPIE — Human protein-protein interaction database.
Knowledge Graph¶
- Drug Mechanism Database (DrugMechDB) — Mechanisms of action from drug to disease.
- DRKG — Large-scale biological knowledge graph for drug discovery.
- Hetionet — Heterogeneous network integrating genes, diseases, drugs, pathways, and more.
- OpenBioLink — Benchmark datasets for biological knowledge graph completion.
- PrimeKG — Multi-modal precision medicine knowledge graph integrating clinical, genetic, and drug data.
Clinical Trial¶
- ClinicalTrials.gov — Privately and publicly funded clinical studies.
- ICD10 — International Classification of Diseases, 10th revision.
- EU Drug Regulating Authorities Clinical Trials DB (EudraCT) — European clinical trial database.
- MIMIC-IV — Freely accessible critical care database.
API¶
- PubMed E-utilities (esearch/efetch) — APIs for searching and retrieving biomedical literature from PubMed.
- NCBI E-utilities — Unified APIs for accessing NCBI databases (Gene, GEO, SRA, PubChem, etc).
- UniProt REST API — Programmatic access to protein sequence and functional annotation data.
- Ensembl REST API — API for genomic annotations, variants, genes, and comparative genomics.
- KEGG REST API — API for accessing KEGG pathways, compounds, genes, and reactions.
- ChEMBL Web Services — REST API for bioactive molecules, targets, and bioassays.
- Open Targets Platform API — API for target–disease associations integrating genetics, genomics, and drug data.
- ClinicalTrials.gov API — API for querying clinical trial metadata and results.
Preprocessing Tools¶
- Chemistry Development Kit — Cheminformatics software & machine learning tools.
- FlashDeconv — High-performance spatial transcriptomics deconvolution (~1M spots in ~3 min).
- RDKit — Cheminformatics software & machine learning toolkit.
- ChatSpatial — MCP server for spatial transcriptomics analysis via natural language.
- Scanpy — Python library for scRNA-seq analysis.
- Seurat — R library for scRNA-seq analysis.
- Squidpy — Python library for spatial single-cell analysis.
Machine Learning Tasks and Models¶
Drug Response Prediction¶
- drGAT — Attention-based model for drug response prediction with gene explainability.
- MOFGCN — GCN + heterogeneous network.
- DeepDSC — Autoencoder + fully connected NN.
- DGDRP — Multi-view embedding neural network.
- DeepAEG — GNN embedding + attention mechanism.
Drug Repurposing¶
- DeepPurpose — Deep learning library for drug repurposing.
Drug Target Interaction¶
- NeoDTI — Library for drug-target interaction prediction.
- DTINet — Network-based framework integrating heterogeneous biological data for DTI prediction.
- DeepDTA — Deep learning model using CNNs on protein sequences and drug SMILES.
- GraphDTA — Graph neural network–based DTI prediction using molecular graphs.
- MolTrans — Transformer-based DTI model leveraging molecular substructures.
- DrugBAN — Bilinear attention network for interpretable DTI prediction.
Compound-Protein Interaction¶
- MCPINN — Drug discovery via compound-protein interaction and machine learning.
- TransformerCPI — CPI prediction using Transformer.
Pre-trained Embedding¶
- Evolutionary Scale Modeling (ESM) — Protein embeddings.
- ChemBERTa-2 — Chemical embeddings & prediction.
LLM for Biology¶
- AI4Chem/ChemLLM-7B-Chat — LLM for chemical & molecular science.
- BioGPT — LLM for biomedical text generation.
- GeneGPT — LLM for biomedical information, integrated with various APIs.
- GenePT — Foundation LLM for single-cell data.
- scPRINT — Pretrained on 50M cells for scRNA-seq denoising & zero imputation.
Foundation Models¶
- scFoundation — Large-scale foundation model for single-cell gene expression, enabling multiple downstream tasks.
- scGPT — Transformer-based foundation model pretrained on millions of single-cell profiles.
- BulkFormer — Foundation model for bulk RNA-seq data; learns general transcriptomic representations.